Packet Radio Basics

Taylorsville HAMnet 20140215

Packet Radio Contents

- Radio Communications History
- Advantages of Packet Radio
- How Packet Radio Operates
- Packet Radio Field Operations
- Packet Radio Range
- Packet Station Equipment
- Packet Radio Theory
- Packet Station Construction
- Review
- Packet Radio Resources

• Morse Code

- Morse Code
 - Spark gap and Klopfer tube

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)
- AM Voice

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)
- AM Voice
- Single Sideband

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)
- AM Voice
- Single Sideband
- FM Voice

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)
- AM Voice
- Single Sideband
- FM Voice
- Digital Packet (simplex)

- Morse Code
 - Spark gap and Klopfer tube
 - Continuous Wave (CW)
- AM Voice
- Single Sideband
- FM Voice
- Digital Packet (simplex)
- Digital Amtor, Pactor, etc.

Packet Radio Advantages

• Allows communication from computer to computer

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection

Packet Radio Advantages

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed
- Error correction assures accurate message delivery

Packet Radio Advantages

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed
- Error correction assures accurate message delivery
- Automatic control TNC controls the message handling without supervision

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed
- Error correction assures accurate message delivery
- Automatic control TNC controls the message handling without supervision
- Universal commands regardless of manufacturer

Packet Radio Advantages

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed
- Error correction assures accurate message delivery
- Automatic control TNC controls the message handling without supervision
- Universal commands regardless of manufacturer
- Can host a bulletin board

- Allows communication from computer to computer
- Uses VHF or UHF frequencies for the network connection
- Transparent operation no operator intervention needed
- Error correction assures accurate message delivery
- Automatic control TNC controls the message handling without supervision
- Universal commands regardless of manufacturer
- Can host a bulletin board
- Can Digipeat

• Multiple "conversations" can be handled simultaneously – time share

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)
- The TNC keys the radio to transmit its packet

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)
- The TNC keys the radio to transmit its packet
- Other TNCs, hearing your transmission, wait for quiet on the channel

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)
- The TNC keys the radio to transmit its packet
- Other TNCs, hearing your transmission, wait for quiet on the channel
- Your TNC waits for acknowledgement from the receiving station and will periodically retransmit your packet until successfully received

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)
- The TNC keys the radio to transmit its packet
- Other TNCs, hearing your transmission, wait for quiet on the channel
- Your TNC waits for acknowledgement from the receiving station and will periodically retransmit your packet until successfully received
- The receiving TNC assembles all packets for each message

- Multiple "conversations" can be handled simultaneously time share
- Collisions are mitigated using the AX.25 radio protocol
- The TNC listens for a quiet space Carrier Sense Multiple Access (CSMA)
- The TNC keys the radio to transmit its packet
- Other TNCs, hearing your transmission, wait for quiet on the channel
- Your TNC waits for acknowledgement from the receiving station and will periodically retransmit your packet until successfully received
- The receiving TNC assembles all packets for each message
- When complete the TNC passes the message to the computer for display

Packet Radio Field Operations

Packet Radio Field Operations

• Can be easily used in the field

Packet Radio Field Operations

- Can be easily used in the field
- Low power transmitters work fine

Packet Radio Field Operations

- Can be easily used in the field
- Low power transmitters work fine
- Low power means long duration battery operation

Packet Radio Field Operations

- Can be easily used in the field
- Low power transmitters work fine
- Low power means long duration battery operation
- Station can act as automatic relay station for message forwarding

Packet Radio Field Operations

- Can be easily used in the field
- Low power transmitters work fine
- Low power means long duration battery operation
- Station can act as automatic relay station for message forwarding
- Receiving computer can print hard copy for agency

Packet Radio Effective Range

- VHF and UHF
- Line of Sight
- Antenna height
- Antenna type
- Feed line losses
- Obstructions
- Power to a lesser extent don't "over talk" the receiving station
- VIAs
- VHF 10 to 100 miles depending on circumstances

Packet Radio Station Equipment

- Power supply(ies) appropriate for the equipment
- Antenna
- Radio
- Terminal Node Controller (TNC)
- Computer
- Cables
- Printer (optional)

Packet Radio Power Supplies

- Radio
- TNC
- Computer
- Illumination for night operations

Packet Radio Antenna

- Antenna Type
- Vertical
- Yagi
- Polarity
- Multipath
- Elevation

Packet Radio Radio

- VHF
- UHF
- Capable of voice communications
- Simplex operation

Packet Radio TNC

Packet Radio TNC

• <u>Mo</u>dulator-<u>Dem</u>odulator (Modem)

Packet Radio TNC

- <u>Mo</u>dulator-<u>Dem</u>odulator (Modem)
- <u>Terminal Node Controller (TNC)</u>

Packet Radio TNC

- Modulator-Demodulator (Modem)
- Terminal Node Controller (TNC)
- The TNC interfaces the computer with the radio
 - Data circuit
 - · Radio control
- TNC-2 is the standard used today

Packet Radio Computer

- Terminal software applications
 - Windows terminal emulation bundled applications abandoned after XP
 - Tera Term http://logmett.com/index.php?/download/tera-term-480-freeware.html
 - WinLink2000 http://www.winlink.org/ClientSoftware
 - HyperTerminal http://www.hilgraeve.com/hyperterminal/
 - ARESPack (MS-DOS) http://www.laarc.org/Public Service.html
- Serial port
- Usually portable: laptop, notebook
- USB ports

Packet Radio Cables

- Antenna feed line
- Radio ←→ TNC
- Computer $\leftarrow \rightarrow$ TNC
- Power
 - Radio
 - TNC
 - Computer
 - Illumination

Packet Radio Theory

- Simplex transmission
- Common frequency
 - Separates packet messages by geography
 - Separates packet messages by functions
- TNC identifies the packet station by call sign or alias
- Packets of data
- CRC
- Data collisions AX.25 protocol
- Receipt of message acknowledgement

Packet Radio Parameters

- There are lots of parameters that must be met to establish reliable and accurate communications
- We usually use default parameters as they most always suffice
- Some special events (Wasatch 100) with extensive packet networks change some parameters to assure more reliable large scale network communications. Examples:
 - Wait times
 - Retries
 - Packet length

Packet Radio Theory - Transmit

Packet Radio Theory - Transmit

- When sending TNC converts computer data packets into:
 - Radio control signal (transmit)
 - Audio representation of data packet

Packet Radio Theory - Transmit

- When sending TNC converts computer data packets into:
 - · Radio control signal (transmit)
 - Audio representation of data packet
- During transmission phase, TNC pauses to listen for acknowledgement from receiving station

Packet Radio Theory - Transmit

- When sending TNC converts computer data packets into:
 - Radio control signal (transmit)
 - Audio representation of data packet
- During transmission phase, TNC pauses to listen for acknowledgement from receiving station
- TNC continues to retransmit packet until acknowledgement is received

Packet Radio Theory - Receive

Packet Radio Theory - Receive

- When receiving TNC converts radio's audio into:
 - Radio control signal (receive)
 - Digital packet derived from the radio's audio

Packet Radio Theory - Receive

- When receiving TNC converts radio's audio into:
 - Radio control signal (receive)
 - Digital packet derived from the radio's audio
- During reception phase, TNC awaits the end of packet byte and attempts to confirm correctness of the data packet using CRC

Packet Radio Theory - Receive

- When receiving TNC converts radio's audio into:
 - Radio control signal (receive)
 - Digital packet derived from the radio's audio
- During reception phase, TNC awaits the end of packet byte and attempts to confirm correctness of the data packet using CRC
- When the packet has been received correctly, the TNC transmits an acknowledgement to the sending station

Packet Radio Station Construction

• Station Block Diagram Schematic

Packet Radio Station Construction • Station Block Diagram Schematic Computer TNC Radio Radio Typical

Packet Radio Station Construction • Station Block Diagram Schematic RS-232 3 Wires Serial Send Data Receive Ground 19V Voltage Converter RS-232 3 Wires Serial Send TNC Radio Typical

Packet Radio Beginning Commands

- MYCall enter your call sign and SSID
- MYAlias enter a tactical call sign or other easy identifier
- Connect connects to a specific station or node transitions to converse mode upon successful connection
- CONVerse enter text conversation mode between stations
- Ctrl-C return to command mode
- Disconnect tear down connection on current stream
- Bye releases connection to a station or node
- MHeard shows calls heard, and date/time if clock is set
- DAytime sets date and time: yymmddhhmmss
- ? Help requests command help script and other information from the current node

Packet Radio Repeaters

- Voice Repeater
 - Too slow for packet
 - Too complicated for packet
- Digipeater (Digi)
 - VIAs
 - Extends your range by the combined ranges of digipeaters used
 - Receiver your message completely
 - Sends your message to the next message destination
 - Accuracy is less certain game of telephone

Packet Radio Bulletin Boards

- You can send a message to a bulletin board (BBS) for later retrieval by a specific station, specific stations, or all stations
- Can be used for forwarding mail to stations not on the air continuously
- Can be used to post bulletins of general interest to any station "reading the mail" at a particular BBS
- Some BBS software can retransmit mail during off hours to reduce network congestion

• Transparency, error correction, automatic control

- Transparency, error correction, automatic control
- Handles complex messaging

- Transparency, error correction, automatic control
- Handles complex messaging
- Allows computers to communicate over VHF or UHF

- Transparency, error correction, automatic control
- Handles complex messaging
- Allows computers to communicate over VHF or UHF
- TNC does all the work

- Transparency, error correction, automatic control
- Handles complex messaging
- Allows computers to communicate over VHF or UHF
- TNC does all the work
- Distance limited by VHF/UHF propagation

- Transparency, error correction, automatic control
- Handles complex messaging
- Allows computers to communicate over VHF or UHF
- TNC does all the work
- Distance limited by VHF/UHF propagation
- Reliable used since 1978

- Transparency, error correction, automatic control
- · Handles complex messaging
- Allows computers to communicate over VHF or UHF
- TNC does all the work
- Distance limited by VHF/UHF propagation
- Reliable used since 1978
- · Easily deployed in the field

- Transparency, error correction, automatic control
- Handles complex messaging
- Allows computers to communicate over VHF or UHF
- TNC does all the work
- Distance limited by VHF/UHF propagation
- Reliable used since 1978
- Easily deployed in the field
- Printed messages available

Packet Radio Frequencies

FREQ	USAGE		WASATCH 100 USAGE
144.390	National APRS		
144.910	Rural Wasatch Front Packet (AX.25)	CLAY	Clayton Peak (also 145.530)
144.930	Utah County Packet	ISLAND	Antelope Island
144.950	Salt Lake County Packet		
144.970	Davis/Weber/Box Elder Counties Packet	MDELL	Mountain Dell
144.990	Rural Wasatch Front Packet (TCP/IP)	LEWIS	Lewis Peak
145.010	Statewide Packet (not for metro-area users)		
145.030	Utah County Packet		
145.050	Salt Lake County Packet (AX.25, MSYS)	PEAK	Ensign Peak
145.070	Davis/Weber/Box Elder Counties Packet (AX.25, MSYS)		
145.090	Tooele/Weber Counties Packet		

Packet Radio Nodes

ALIAS	CALL	FREQ	BBS	AREA
PEAK	KD0J-11	145.05	No	SL County, Wasatch 100; deviation metering
IMED	KI7L-7	145.05	No	SL County
ENSIGN	KD0J-10	145.05?	No	SL County
KATE	W0HU-6	145.05	Yes	SL County
SLCOAT	KD7OAT-7	145.05	Yes	SL County
	K7DAV-10	145.07	N7MLR	Davis County
CLAY		144.91 145.53	No	Wasatch 100 Clayton Peak
MDELL		144.97	No	Wasatch100 Mountain Dell
ISLAND		144.93	No	Wasatch 100 Antelope Island
LEWIS		144.99	No	Wasatch 100 Lewis Peak

Packet Radio Resources

- Tucson Amateur Packet Radio (TAPR) www.tapr.org
- BUXCOMM
 - http://www.buxcomm.com/catalog/
 - http://www.hamgrp.com/techfiles.html
- Wikipedia Packet radio http://en.wikipedia.org/wiki/Packet_radio
- TNC Manufacturers
 - MFJ http://www.mfjenterprises.com/Categories.php?sec=236
 - PacComm http://paccomm.com/
 - AEA Timewave http://www.timewave.com/amprods.html
 - Kantronics http://www.kantronics.com/modems.html
 - TinyTrak http://www.byonics.com/tinytrak4/